Research paper

Evaluation of Antioxidant Activity of Obtained Derivatives of Vanillin

Olawale Hakeem Oladimeji1,*, Stanllinus Njinga2, and Saad Toyin Abdullahi2

1Department of Pharmaceutical & Medicinal Chemistry, Faculty of Pharmacy, University of Uyo, Uyo, Nigeria
2Department of Pharmaceutical & Medicinal Chemistry, Faculty of Pharmaceutical Sciences, University of Ilorin, Nigeria

ARTICLE INFO
Received 26 December 2021
Revised 28 January 2022
Available Online 15 February 2022

ABSTRACT

Background: Vanillin is a white monoclinic crystalline compound whose chemical nomenclature is p-hydroxy-m-methoxy benzaldehyde. It is a phenolic aldehyde with a pleasant flavor and popularly found in vanilla beans and roasted coffee amongst many other sources. It serves as in addition; it possesses antitumor and particularly antioxidant activity which formed the essence of this study.

Objectives: The insidious presence of free oxygenated and nitrogen radicals in the human body has become a worrisome concern. These chemical species continue to plague the human cells, tissues and organs resulting in different pathophysiological conditions such as cancers and neurodegenerative disorders like Alzheimer’s disease and Parkinson’s disease amongst many other ailments. The search for novel pharmacological compounds with the aim of curbing the rising incidence of these radicals led the choice of vanillin in this present study.

Methodology: Vanillin was separately subjected to a series of derivatization reactions namely, acetylation, O-demethylation, reduction and oxidation. The melting points, refractive indices and optical rotations of the lead compound and derivatives were obtained. The antioxidant activities of the five compounds were determined using the DPPH (2, 2-diphenyl-1-picrylhydrazyl hydrate) test. Comparison of the obtained antioxidant activities was done to determine if any improvements could be seen in the derivatives.

Results: The identities of the derivatives have been revealed to be vanillyl acetate (E-1) (acetyl derivative), 3, 4-dihydroxy benzaldehyde or protocatechu aldehyde (E-2) (demethylated derivative), 0-methoxy-p-methyl cyclohexan-1-ol (J-1) (reduced derivative) and vanillic acid (J-2) (oxidized derivative) respectively using the IR spectral technique. Vanillin, E-2 and J-2 derivatives gave marginal antioxidant activity of IC50 of 0.81, 0.84 and 0.085 µg/mL respectively while J-1 and E-1 demonstrated moderately significant IC50 of 0.59 and 0.63 µg/mL which compare favorably with 0.44 µg/mL elicited by Vitamin C (a standard antioxidant drug). It is pertinent to point out that the obtained reduced derivative is a substituted cycloalkanol (a saturated cyclic compound) instead of a substituted phenolic compound as was expected.

Conclusion: The results from this study indicate that reduction and acetylation separately enhance the antioxidant activity of vanillin.

Keywords: Vanillin; Vanillyl acetate; Protocatechu aldehyde; o-methoxy-p-methyl cyclohexan-1-ol; Vanillic acid; Antioxidant activity
Introduction

Oxidative stress is linked to the imbalance between reactive oxygen species and reactive nitrogen species (ROS and RNS) production and antioxidant defense, leading to oxidative damage to lipids, proteins and genetic material that contributes to the development of a range of different patho-physiological conditions [1]. Thus, when the body is unable to process and remove free radicals efficiently, oxidative stress (OS) occurs. This condition has been implicated in a number of disease conditions such as arthritis, atherosclerosis, vision loss, emphysema, respiratory ailments, autoimmune disorders, mental stress, Alzheimer’s disease and Parkinson’s disease amongst so many others. Some free radicals are needed for the body to function effectively, but their overload may be fatal. The body needs to maintain an equilibrium between free radicals and antioxidants so as to prevent oxidative stress. Hence, the need for efficient antioxidants cannot be over emphasized. In the search for novel pharmacologically active compounds, vanillin was considered. Vanillin is a pleasant-smelling aromatic compound occurring naturally in vanilla beans, roasted coffee, Chinese red pine and leptotes amongst many other sources. It is used as a flavoring agent in candies, ice cream, yoghurt, beverages, soda drinks, confectioneries and alcoholic liquors. In addition, it has tremendous applications in the fragrance and perfumery industries where it is used as an additive in making candles, incense, air-fresheners, creams, soaps, shampoos and ointments. It possesses antioxidant and antitumor properties and is used as a chemical intermediate in the production of pharmaceuticals, cosmetics and herbicides. In this present study, vanillin was subjected to acetylation, O-demethylation, reduction and oxidation reactions. The antioxidant activities (IC₅₀) of the vanillin and the respective derivatives were obtained using the rapid bench-top DPPH (2, 2-diphenyl-1-picrylhydrazyl hydrate) test [2-4]. Comparison of the antioxidant activities was done with the aim of determining if any improvements in the obtained activities of the derivatives could be noticed.

Materials and Methods

Reagents/chemicals

DPPH (2, 2-diphenyl-1-picryl hydrazyl hydrate), vanillin and vitamin C tablets were purchased from Tianjin Kernel Chemical Reagent Company, China, Sigma Aldrich Chemicals, Germany and Emzor Pharmaceuticals, Nigeria respectively. Solvents and reagents namely, acetic acid, acetic anhydride, chloroform, di-ethyl ether, dichloromethane, ethanol, ethyl acetate, hydrochloric acid, iodine, magnesium sulphate, methanol, n-butanol, n-hexane, petroluem-ether, potassium permaganate, pyridine HCl, sodium borohydrde, disodium hydrogen phosphate, sodium hydroxide, sulphuric acid and tetrahydrofuran were obtained as AnaLAR Grade Chemicals from BDH Chemicals Limited, Poole, England.

Solubility tests for vanillin

Vanillin (0.01 g) was added to 2 mL of each of the following solvents namely, distilled water, methanol, ethyl acetate, ethanol, petroleum ether, n-hexane, n-butanol, dilute HCl, dilute H₂SO₄ separately and observation was made for complete dissolution (solubility) or otherwise.

Determination of melting point

Vanillin (0.05 g) was filled to a quarter of the length of a micro-capillary tube and the melting point determined [5] using an Electro-thermal Melting Point apparatus (Electro-thermal Engineering Limited, England).

Synthesis of acetyl derivative

Vanillin (0.4 g) was dissolved in a mixture of acetic anhydride (10 mL) and acetic acid (10 mL) in a beaker. The solution was heated for 20 minutes and allowed to cool. Concentrated sulphuric acid (5 mL) was added as catalyst. Further heating was done for a few minutes. The mixture was covered with aluminum foil and kept in the refrigerator. After two weeks, an amorphous compound was formed in the beaker. 5 mL of warmed di-ethyl was added and the mixture warmed again for some minutes. The compound dissolved on warming but formed back after four hours, filtered, dried and then stored in the refrigerator for further studies [6,7].
Vanillin

O-demethylation reaction

Vanillin (0.4 g) was added to a solution pyridine HCl (50 mL) and dilute hydrochloric acid (10 mL) and the mixture stirred until complete dissolution. The mixture was heated at 27°C for thirty minutes and allowed to cool. The resulting product was filtered, dried at water pump and then stored in a refrigerator [8].

Vanillin acetate or vanillyl acetate (E-1)

3, 4-dihydroxy benzaldehyde or protocatechualdehyde (E-2)

to the mixture at a temperature of 0 °C (in ice) with further evolution of hydrogen gas. The contents were further stirred for 1 hour. Dilute hydrochloric acid (5 mL) was added carefully and the mixture extracted with diethyl ether. The combined ethereal extract was washed with 3 M sodium hydroxide (30 mL), brine and dried over magnesium sulphate. Evaporation of the organic layer gave the reduced product [9].

Synthesis of reduced derivative

A solution of vanillin (1.5 g) in tetrahydrofuran (20 mL) was slowly added to a suspension of sodium borohydride (0.45 g) in tetrahydrofuran (200 mL) at room temperature and left for ten minutes. The mixture was then stirred until evolution of gas ceased. Iodine (0.63 g) and tetrahydrofuran (20 mL) were added slowly to the mixture at a temperature of 0 °C (in ice) with further evolution of hydrogen gas. The contents were further stirred for 1 hour. Dilute hydrochloric acid (5 mL) was added carefully and the mixture extracted with diethyl ether. The combined ethereal extract was washed with 3 M sodium hydroxide (30 mL), brine and dried over magnesium sulphate. Evaporation of the organic layer gave the reduced product [9].

Synthesis of oxidized derivative

Vanillin (0.4 g) was weighed and added to a butanolic solution of potassium permanganate (50 mL) and the mixture stirred for ten minutes. Disodium hydrogen phosphate (5 mL) was added as a buffer to the mixture which was stirred for thirty (30) minutes and then stored in the refrigerator for a week for complete reaction [8].

Vanillin

o-methoxy-p-methyl cyclohexan-1-ol (J-1)

---

**Determination of specific optical rotation and refractive index**

Each sample (0.05 g) was dissolved in methanol (10 mL). The tube of the Polarimeter (ADP-220, Bellingham Stanley, England) was filled with distilled water and the machine subsequently zeroed. The tube was refilled with 5 mL of sample and the optical rotation and was measured at the wavelength (λ) of sodium D line (589.3 nm) at 20.5°C. Similarly, the refractive index of sample was obtained on a refractometer (WAY-15, Abbe, England) at the wavelength (λ) of sodium D line (589.3 nm) at 20.5°C [10,11]. In a situation where the derivative was a liquid, 5 mL of sample was used for the determinations.

**Antioxidant activity**

**Spectrophotometric determination of antioxidant activity using DPPH reagent**

Substances which are capable of donating electrons or hydrogen atoms can convert the purple-colored DPPH radical (2, 2-diphenyl-1-picrylhydrazyl hydrate) to its yellow-colored non-radical form; 1, 1-diphenyl-2-picryl hydrazine [12,13]. This reaction can be monitored by spectrophotometry.

**Preparation of calibration curve for DPPH reagent**

DPPH (4 mg) was weighed and dissolved in methanol (100 mL) to produce the stock solution (0.004 % w/v). Serial dilutions of the stock solution were then carried out to obtain the following concentrations: 0.0004, 0.0008, 0.0012, 0.0016, 0.0020, 0.0024, 0.0028, 0.0032 and 0.0036 % w/v. The absorbance of each of the sample was taken at λm 512 nm using the Ultra-Violet Spectrophotometer (Jenway 6405, USA). This machine was zeroed after an absorbance had been taken with a solution of methanol without DPPH which served as the blank.

**Determination of the antioxidant activity of vanillin, derivatives and vitamin C**

2 mg each of sample was dissolved in 50 mL of methanol. Serial dilutions were carried out to obtain the following concentrations: 0.0004 mg mL⁻¹, 0.0008 mg mL⁻¹, 0.0012 mg mL⁻¹, 0.0016 mg mL⁻¹ and 0.0020 mg mL⁻¹ using methanol. 5 mL of each concentration was incubated with 5 mL of 0.004 % w/v methanolic DPPH solution for optimal analytical accuracy. After an incubation period of 30 minutes in the dark at room temperature (25 ± 2°C), observation was made for a change in the color of the mixture from purple to yellow. The absorbance of each of the samples was then taken at λm 512 nm. The Radical Scavenging Activity (RSA %) or Percentage Inhibition (PI %) of free radical DPPH was thus calculated:

\[
RSA \% (PI \%) = \left(\frac{A_{\text{blank}} - A_{\text{sample}}}{A_{\text{blank}}}\right) \times 100
\]

A<sub>blank</sub> is the absorbance of the control reaction (DPPH solution without the test sample and A<sub>sample</sub> is the absorbance of DPPH incubated with the sample. Vanillin /derivative / Vitamin C concentration providing 50 % inhibition (IC₅₀) was calculated from a graph of inhibition percentage against the concentration of the vanillin/ derivative /vitamin C [14-16]. Vitamin C was used as a standard antioxidant drug.

**Thin-layer chromatography of samples**

A portion of each solid sample (0.05 g) dissolved in methanol (2 mL) or 2 mL of liquid sample was applied on a 20 cm x 10 cm silica gel analytical plate (Merck, Germany) and then developed in a toluene : acetone : water (10:20:1) mixture in a chromatographic tank until optimal separation was observed. The retardation factor (R<sub>f</sub>) was then computed thus:
**Results**

Infra-red spectroscopy of samples

Each sample (0.2 g) or 2 mL (liquid) was analyzed for IR characteristics using the FTIR 84005 Spectrophotometer (Shimadzu, Japan).

Ultra-violet/visible spectroscopy of samples

A portion of each sample (0.2 g) or 2 mL (liquid) was analyzed for UV/VS absorption characteristics using the Jenway 6405 UV/VS Spectrophotometer.

### Table 1: Preparation of calibration curve for DPPH reagent at $\lambda_{\text{max}}$ 512 nm.

<table>
<thead>
<tr>
<th>Concentration</th>
<th>Average absorbance (± 0.006)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>0.068</td>
</tr>
<tr>
<td>0.0008</td>
<td>0.165</td>
</tr>
<tr>
<td>0.0012</td>
<td>0.239</td>
</tr>
<tr>
<td>0.0016</td>
<td>0.32</td>
</tr>
<tr>
<td>0.002</td>
<td>0.391</td>
</tr>
<tr>
<td>0.0024</td>
<td>0.446</td>
</tr>
<tr>
<td>0.0028</td>
<td>0.535</td>
</tr>
<tr>
<td>0.0032</td>
<td>0.651</td>
</tr>
<tr>
<td>0.0036</td>
<td>0.703</td>
</tr>
</tbody>
</table>

**Figure 1:** Graph of absorbance against concentration of methanolic solution of DPPH reagent.

### Table 2: Absorbance of samples incubated with DPPH at different concentrations at $\lambda_{\text{max}}$ 512 nm (Blank absorbance of 0.004% methanolic DPPH reagent: 0.748).

<table>
<thead>
<tr>
<th>Sample</th>
<th>0.0008 mg mL$^{-1}$</th>
<th>0.0016 mg mL$^{-1}$</th>
<th>0.0024 mg mL$^{-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vitamin C</td>
<td>0.061</td>
<td>0.053</td>
<td>0.052</td>
</tr>
<tr>
<td>Vanillin</td>
<td>0.325</td>
<td>0.32</td>
<td>0.275</td>
</tr>
<tr>
<td>E-1</td>
<td>0.307</td>
<td>0.223</td>
<td>0.164</td>
</tr>
<tr>
<td>E-2</td>
<td>0.395</td>
<td>0.351</td>
<td>0.304</td>
</tr>
<tr>
<td>J-1</td>
<td>0.259</td>
<td>0.189</td>
<td>0.146</td>
</tr>
<tr>
<td>J-2</td>
<td>0.391</td>
<td>0.349</td>
<td>0.301</td>
</tr>
</tbody>
</table>

**Key:**  E-1 = Vanillin acetate or vanillyl acetate or 4-O-acetyl vanillin); E-2 = 3, 4-dihydroxy benzaldehyde (Protocatechui aldehyde); J-1 = 0-methoxy-p-methyl cyclohexan-1-ol; J-2 = 3-methoxy-4-hydroxy benzoic acid (vanillic acid); DPPH = 2, 2-Diphenyl-1-picrylhydrazyl hydrate.
Table 3: Radical scavenging activity (percentage inhibition %) of samples at different concentrations and IC$_{50}$ of samples.

<table>
<thead>
<tr>
<th>Sample</th>
<th>0.0008 mg mL$^{-1}$</th>
<th>0.0016 mg mL$^{-1}$</th>
<th>0.0024 mg mL$^{-1}$</th>
<th>IC$_{50}$ (μg mL$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vitamin C</td>
<td>91.84</td>
<td>92.91</td>
<td>93.05</td>
<td>0.44</td>
</tr>
<tr>
<td>Vanillin</td>
<td>52.69</td>
<td>53.27</td>
<td>59.83</td>
<td>0.81</td>
</tr>
<tr>
<td>E-1</td>
<td>58.96</td>
<td>70.19</td>
<td>78.07</td>
<td>0.68</td>
</tr>
<tr>
<td>E-2</td>
<td>47.19</td>
<td>53.41</td>
<td>59.41</td>
<td>0.84</td>
</tr>
<tr>
<td>J-1</td>
<td>65.37</td>
<td>74.73</td>
<td>80.48</td>
<td>0.59</td>
</tr>
<tr>
<td>J-2</td>
<td>52.76</td>
<td>55.43</td>
<td>57.87</td>
<td>0.85</td>
</tr>
</tbody>
</table>

**Key:** Refer to Table 2 and RSA % (PI %) = Radical Scavenging Activity (Percentage Inhibition %); IC$_{50}$ = Concentration at which 50 % of DPPH is scavenged or inhibited.

**Vanillin:** C$_{9}$H$_{6}$O$_{3}$; mol. wt. (152.15 g/mol); white crystalline solid; m.pt. (80-82 °C); [α]$_{D}^{20}$ (1.5770); [α]$_{D}^{20}$ (0 0); λ$_{max}$ (246 nm); R$_{f}$ (0.66); FTIR (cm$^{-1}$): 1146 (C-O-C), 1575 (Ar-C=C), 1634 (C=O), 2847 (-CH stretching) and 3179 (Ar-OH).

**Vanillin acetate or vanillyl acetate (E-1):** C$_{10}$H$_{10}$O$_{5}$; mol. wt. (194.19 g/mol); amorphous dark yellow solid; m.pt. (79-81 °C); [α]$_{D}^{20}$ (1.5791); [α]$_{D}^{20}$ (0 0), λ$_{max}$ (400 nm); R$_{f}$ (0.70); FTIR (cm$^{-1}$): 1157 (C-O-C), 1597 (Ar-C=C), 1684 (C=O in -COCH$_{3}$), 1745 (C=O), 2942 (-CH) and 2965 (-CH).

3. **4-dihydroxy benzaldehyde (protocatechui aldehyde (E-2):** C$_{7}$H$_{6}$O$_{3}$; mol. wt. (138.12 g/mol); pale yellow resinoid compound; m.pt. (152-154 °C), [α]$_{D}^{20}$ (1.4874); [α]$_{D}^{20}$ (0 0); λ$_{max}$ (246 nm); R$_{f}$ (0.23); FTIR (cm$^{-1}$): 1600 (Ar-C=C), 1756 (C=O), 3245 (-OH) and 3487 (-OH).

**o-methoxy-p-methyl cyclohexan-1-ol (J-1):** C$_{8}$H$_{16}$O$_{2}$; mol. wt. (144.14 g/mol); colorless liquid; [α]$_{D}^{20}$ (1.5773); [α]$_{D}^{20}$ (0 0); λ$_{max}$ (370 nm); R$_{f}$ (0.89); FTIR (cm$^{-1}$): 1161 (C-O-C) and 3460 (-OH).

**3-methoxy-4-hydroxy benzoic acid (vanillic acid) (J-2):** C$_{8}$H$_{6}$O$_{3}$; mol. wt. (168.14 g/mol); light yellow solid; m.pt. (209-211 °C), [α]$_{D}^{20}$ (1.5773); [α]$_{D}^{20}$ (0 0); λ$_{max}$ (248 nm); R$_{f}$ (0.53); FTIR (cm$^{-1}$): 1610 (Ar-C=C), 1716 (C=O), 2991 (-CH) and 3490 (-OH).

**Discussion**

Vanillin is a white monoclinic crystalline compound with sweet smelling, pleasant and balsamic fragrance. It was put through some monographic determinations in this study where its identity, purity, integrity and suitability were established. The compound was observed to be soluble in ethanol, ethyl acetate, n-butanol, n-heaxane, methanol and water when heated. However, it was insoluble in petroleum ether, dilute hydrochloric acid and dilute sulphuric acid. Its determined melting point and refractive index fall within standard literature values. The UV absorption at λ$_{max}$ (246 nm) is indicative of the presence of electron densities in Ar-C=C, -OH, -OCH$_{3}$ and HC=O chromophores while retardation factor R$_{f}$ (0.66) shows that vanillin is moderately polar and hence likewise retarded on the silica gel used in the thin-layer chromatographic (TLC) analyses. The IR spectral matrix of vanillin shows stretching’s at 1146, 1575, 1634, 2847 and 3179 cm$^{-1}$ which are diagnostically characteristic of -C=O-C, Ar-C=C, -C=O, -CH and Ar-OH groups respectively. Vanillin acetate or vanillyl acetate or 4-O acetyl vanillin (E-1) which belongs to a class of aromatic phenol esters was synthesized as dark yellow compound with a flavor and fragrance similar to the odour of vanilla. The UV absorption at λ$_{max}$ (400 nm) which is comparatively higher than that of the parent analogue (vanillin) indicates the presence of electron clouds over Ar-C=C, -OCH$_{3}$, -OOCCH$_{3}$ and HC=O chemical species while retardation factor R$_{f}$ (0.70) shows that acetyl product is comparably non-polar and hence weakly retarded on the silica gel plate. The IR spectrum of E-1 shows stretching’s at 1157, 1597, 1684, 1745, 2942 and 2965 cm$^{-1}$ which are characteristic of -C=O-C, Ar-C=C, -CO in OOCCH$_{3}$ substitution of the derivative), -C=O and -CH respectively. It is instructive to note that the peaks in the acetyl product absorb at slightly higher than that those recorded in the IR spectrum of vanillin. Furthermore, the peak representing –C=O-C is particularly and diagnostically elucidative indicating that the hydrogen atom in the -OH had been replaced with -COCH$_{3}$ showing the acetylation of the vanillin had truly taken place. The O-demethylated product (3,4-dihydroxy benzaldehyde (E-2) was synthesized as a pale-yellow resin. In addition, the UV absorption at λ$_{max}$ (246 nm) is the same as found with vanillin. However, the electrons are found...
delocalized over only Ar-C=C, -OH and HC=O chromophores without -OCH₃ while retardation factor Rₑ (0.23) indicates that E-2 is too polar because of the presence of 2-OH groups in the derivative.

Hence, the product is strongly attracted to the OH groups of the silica gel and thereby making E-2 greatly retarded on chromatographic plate. The IR spectrum of E-2 shows peaks at 1600, 1756, 3245 and 3487 cm⁻¹ which are indicative of Ar-C=C, -C=O and -OH chemical species. This derivative also known as protocatechui aldehyde is employed as a perfumery and flavoring agent. In addition, this aldehyde also serves as a precursor in the synthesis of vanillin by biotransformation of cell cultures of Capsicum frutescense [17]. It is also used as an apoptosis inducer in human leukemia cells, possess anti-proliferative property against breast and colorectal cancers and cardio-protective activity [18]. The reduced product (o-methoxy-p-methyl cyclohexan-1-ol) (J-1) was synthesized as a colorless liquid. The UV absorption at λ₁₅₀ (370 nm) is indicative of presence of electrons in -OH and -OCH₃ species while Rₑ (0.89) shows that the product is non-polar because of the presence of methyl cyclohexyl group thereby making J-1 largely un-retarded or un-hindered on the silica-coated plate. The IR spectrum of the derivative shows a matrix characterized by stretchings at 1161 and 3460 cm⁻¹ which are indicative of -C-O-C and -OH species. It needs to be stated that the reduction reagent (NaBH₄/I₂) is supposed to selectively reduce the -C=O to -CH₂ [9]. Surprisingly, in addition to this supposition, the three (3) endocyclic Ar-C=C bonds were also reduced. Hence, the IR peaks at 1575s and 1634 cm⁻¹ in the vanillin (parent compound) representing the aromatic double bonds and carbonyl species disappeared. This translates to losses of the aromatic character and carbonyl group in the derivative. This same scenario was observed in a previous study [3] where gallic acid was reduced to a new compound (3,4,5-trihydroxycyclohexyl methanol) using NaBH₄ / I₂. It is interesting to note that if -C=O is attached to the aromatic ring, this reduction procedure will result in a product with both C=O and Ar-C=C double bonds being reduced simultaneously as has been observed in this present study and [3]. It will be of curious interest to know the reaction mechanism by which this particular reduction is effectuated. However, if the C=O is far from the aromatic ring (when not found attached to the aromatic ring), the reduction involves will only the C=O and not the Ar-C=C bonds as observed in [2,9]. The oxidation of vanillin led to a compound which has been identified to be vanillic acid (J-2). It is a mono substituted hydroxy benzoic acid which is a plant metabolite and also a conjugate acid of a vanillate. The UV absorption at λ₁₅₀ (248 nm) highlights the presence of electron clouds over Ar-C=C, -OCH₃, -COOH and -OH chemical species while retardation factor Rₑ (0.53) indicates that the oxidized product is moderately polar and hence likewise retarded on the silica gel plate. The IR spectrum of this derivative shows peaks at 1610, 1716, 2991 and 3490 cm⁻¹ reflecting Ar-C=C, -C=O, -CH and -OH respectively. J-2 has been reported to inhibit inflammatory pains, oxidative stress and cytokine production in mice [19] and serves as an intermediate product in the bioconversion of ferulic acid to vanillin [20]. Generally, the parent compound, vanillin and all other solid derivatives gave melting points and refractive indices which are consistent with literature values. Furthermore, it was observed that vanillin and all the derivatives showed optical rotation [α]D ²₀ of 0° indicating that the compounds are optically inactive. Hence, none of these compounds will demonstrate laevoration (-) (ability of a compound to rotate plane of light in anticlockwise direction) or dextro-rotation (+) (ability of a compound to rotate plane of light in clockwise direction) [10,11]. The preparation of a calibration curve was done for DPPH (2, 2-diphenyl-1-picryl hydrazyl hydrate) reagent with the aim of ascertaining its purity and suitability for use in the antioxidant determinations. The Beer-Lambert’s Law is the basis of all absorption spectrophotometry [12,21]. The calibration curve obtained indicates that the underlying principles behind the aforementioned law were fulfilled as the curve (Figure 1) shows a straight line which passes through the origin. The reduction of the DPPH radical was determined by taking its absorption at a wavelength of λ₁₅₀ 512 nm. It was observed that the absorbance of DPPH decreased as the concentration of added free radical scavenger (vanillin /derivative/vitamin C) increased which suggested that the DPPH reagent was being reduced (Table 2). Furthermore, Table 3 shows radical scavenging activity (RSA %) or percentage inhibition (PI %) and the computed IC₅₀ values of vanillin /derivative / vitamin C. The RSA % is an indicator of the antioxidant activity of vanillin / derivative / vitamin C. Interestingly, vanillin, O-demethylated product (E-2) and oxidized derivative (J-2) all demonstrated marginal antioxidant activity (IC₅₀) of 0.81, 0.84 and 0.85 μg mL⁻¹ respectively. This is not surprising because the chemical structures of these three compound/products contain(s) chemical species such as -OH, HC=O and / or -COOH which confer some hydrophilic character on the compounds. Hence, these
compounds will experience some hindrance in reaching the active or allosteric sites where the pharmacological action of anti-oxidation is to be affected. However, the reduced product (J-1) and acetyl product (E-1) gave moderate antioxidant activity (IC\textsubscript{50}) of 0.59 and 0.68 μg mL\textsuperscript{-1} respectively. The values particularly compare significantly with the antioxidant activity given by vitamin C (a standard antioxidant drug) at 0.44 μg mL\textsuperscript{-1}. However, it should be highlighted that the reduced product (J-1) was slightly more active than E-1. From the foregoing, it can be inferred that both reduction and acetylation separately enhance the antioxidant activity of vanillin. Furthermore, J-1 contains the methyl cyclohexyl moiety which confers much more lipophilic character on the molecule than -CHO, -OCH\textsubscript{3} and -OCOCH\textsubscript{3} in E-1 which could have contributed to the observed antioxidant activity. Other methods apart from DPPH test for determining the antioxidant activity of compounds include the hydrogen peroxide, nitric oxide, conjugated diene, superoxide, phosphomolybdenum, peroxynitride and xanthine oxidase assay methods amongst many others [22-27].

**Conclusion**

This present study shows that the reduced derivative (o-methoxy-p-methyl cyclohexan-1-ol) and acetyl derivative (vanillin acetate) elicited significant antioxidant activities. However, the activity demonstrated by reduced product was slightly better than that of the acetyl product. Hence, reduction and acetylation both separately enhances antioxidant activity of vanillin.

**Consent for Publication**

Not applicable.

**Funding**

None.

**Conflict of Interest**

The author declares no conflict of interest, financial or otherwise.

**Acknowledgements**

The authors acknowledge the kind gesture of the Department of Pharmaceutical and Medicinal Chemistry, University of Uyo for the use of its Jenway 6405UV/VS Spectrophotometer in the antioxidant assays. Also, we are grateful the contribution of the University of Ibadan, Nigeria for the use of its FTIR 84005 Spectrophotometer (Shimadzu, Japan) in obtaining the IR spectra of the compounds.

**References**


