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Abstract 

Carbon nanomaterials have gained significant momentum as promising 

candidate materials for biomedical applications due to their unique 

structure and properties. Carbon-based nanohybrids can be used as 

magnetic and fluorescent imaging contrast agent agents when it was 

functionalized by magnetic and fluorescent components. This mini-review 

summarizes the ultramodern applications and developments of hybrid 

carbon materials and addresses the future perspectives of carbon-based 

magnetic and fluorescent nanohybrids in the biomedical field.   

Keywords: Carbon-based materials; Magnetic/fluorescent nanohybrids; 
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Introduction

Multifunctional nanoparticles (MNPs) have drawn a lot 

of attention in recent years [1]. Various precursors have 

been used as substrates to fabricate multifunctional 

nanohybrids [2,5]. Among them, carbon-based 

substrates have been proven to have excellent potential 

with biocompatibility, large specific surface area, non-

specific binding sites and easy surface modifications [6-

9]. In particular, magnetic or fluorescent components in 

carbon-based nanohybrids can image the tissues for 

cancer diagnosis due to their characteristics of non-

ionization, high spatial resolution, and deep tissue 

penetration for magnetic resonance imaging (MRI) or 

single-cell sensitivity and subcellular resolution for 

fluorescence optical imaging (FOI). But MRI alone has 

the disadvantages of poor sensitivity and FOI alone 

possesses bad spatial resolution and tissue penetration 

in clinical applications [10]. It`s desirable to design new 

imaging agents that can combine more imaging 

modalities to address issues such as resolution, 

sensitivity, and tissue penetration [11-18]. 

In the mini review, we try to shortly review the recent 

developments and applications of carbon-based 

magnetic and fluorescent nanohybrids as multi-modal 

imaging agents. 

Multi-Modal Imaging 

Early detection of tumor tissues in vivo by medical 

imaging is crucial in the fight against cancer. So far, a 

variety of imaging technologies have been developed 

and used in clinical medicine, including MRI, FOI, X-

ray computed tomography (CT) imaging, positron-

emission tomography (PET) imaging, and ultrasound 

imaging. Each imaging method has their advantages and 

disadvantages. MRI has exceptional spatial resolution 

but lacks sensitivity. FOI is relatively economical and 

very sensitive but cannot penetrate deep into all tissues 

in the body. CT and ultrasound imaging possesses high 

spatial resolution but low sensitivity. PET is relatively 

sensitive yet provides no structural information. Multi-

modal imaging through synergistically combining two 

or more imaging modalities into a single one offers 

possibilities to address multiple issues such as 

resolution, sensitivity, and tissue penetration, because 

multimodality techniques have complementary and 

cross validation abilities [19,20]. For example, 

preclinical photoacoustic (PA) imaging is a hybrid 
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modality, combining the high contrast and 

spectroscopic-based specificity of optical imaging with 

the high spatial resolution of ultrasound imaging. PA 

imaging offers greater specificity than conventional 

ultrasound imaging with the ability to detect 

haemoglobin, lipids, water and other light-absorbing 

chromophores, but with greater penetration depth than 

purely optical imaging modalities that rely on ballistic 

photons [21,22]. Herein, we attach immense importance 

to multimodal imaging from the combination of MRI 

with FOI. The integration of magnetic and fluorescent 

components into the carbon-based hybrid NPs can 

provide not only the MRI contrast, but also the confocal, 

two-photon and NIR fluorescence imaging contrast [23-

26]. 

Magnetic Resonance Imaging 

MRI is a non-invasive imaging modality for 

determining the presence, location and size of a tumor 

in clinical tests, based on the alignment/spins of 

hydrogen nucleus (proton) in an applied magnetic field 

[27]. Upon application of a transverse radiofrequency 

pulse, these protons are perturbed from the magnetic 

field. The subsequent process through which these 

protons return to their original state is referred to as the 

relaxation phenomenon. Two independent processes, 

longitudinal relaxation (T1-recovery) and transverse 

relaxation (T2-decay), can be monitored to generate an 

MR image.   

Carbon-based hybrid NPs containing 

superparamagnetic or ferromagnetic or paramagnetic 

components are typically used to act as T2 or T1 phase 

contrast agents due to their negative and positive 

contrast enhancement using T2 and T1-weighted pulse 

sequences, respectively. Wang et al. developed a type 

of multifunctional hybrid NPs (∼100 nm) that combine 

fluorescent carbon dots (CDs) and magnetic Fe3O4 

nanocrystals into a porous carbon matrix [23]. The 

resultant Fe3O4@C-CDs hybrid NPs demonstrated a 

superparamagnetic behaviour with good magnetic 

responsive properties (Ms=32.5 emug−1) and MRI 

ability (r2=674.4 mM−1s−1). As shown in Figure 1, 

Fe3O4@C-CDs hybrid NPs with surface 

carboxyl/hydroxyl groups sufficiently disperse in 

aqueous solutions.  

When the anisotropic field-induced magnetic dipolar 

interaction of Fe3O4@C-CDs hybrid NPs was stronger 

than the Brownian motion and electrostatic repulsion in 

solution, the Fe3O4@C-CDs hybrid NPs tended to 

assemble in a head-to-tail configuration, leading to the 

formation of a one-dimensional (1D) linear nanochain 

structure under an external magnetic field [28-32]. 

Interestingly, the dispersed 0D building block NPs exert 

lower MRI contrasting ability(r2=960.9 mM−1s−1) than 

the 1D nanochains assembled from the nearly 

monodisperse Fe3O4@C-CDs hybrid NPs.[26] The 

increased magnetization and local magnetic field 

strength of the assembled Fe3O4@C-CDs hybrid NP 

chains influenced surrounding protons to transversely 

relax faster and resulted in such an enhancement in the 

T2-weighted MRI contrasting ability of the 1D 

structured NP chains [33]. Yang et al. proved that NIR 

fluorescent CdTe quantum dots (QDs) and 

superparamagnetic iron oxide (SPIO) NPs were coupled 

onto the surface of carbon nanotubes as multimodal 

cellular imaging agents were used for detecting human 

embryonic kidney (HEK) 293T cells [34]. Compared 

with the SPIO-CdTe bicomponent NPs, it exerted 

higher intracellular labelling efficiency because of the 

enhanced penetration ability of carbon nanotubes into 

cells. 

 

Figure 1: (A) T2 relaxation rates and (B) T2-weighted 

MR images as a function of iron concentration (mM) for 

the dispersed Fe3O4@C-CDs hybrid NPs (0 D) and their 

assembled linear Fe3O4@C-CDs hybrid NP chains(1D) 

respectively. 

Fluorescence Imaging 

Fluorescence intracellular imaging is a suitable 

technology to sense physical and chemical changes in 

the body because the fluorescence signal variation is 

sensitive, selective, rich in contrast, and versatile. 

Meanwhile, the intracellular probing of these events can 

contribute to the explanation of intricate biological 

processes and the development of novel diagnoses. 

Many fluorescent probes have been used as optical 

signals for fluorescence intracellular imaging. The 
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incorporation of different fluorophores into 

nanostructured magnetic-carbon hybrids has led to the 

successful combination of MRI modality with confocal 

fluorescence imaging, or two-photon fluorescence 

imaging, or NIR fluorescence imaging modality [35-

42]. 

Confocal Fluorescence Imaging 

The confocal fluorescence imaging technique is the use 

of a range of distinct excitation wavelengths in the UV-

visible light range. The excitation wavelengths is 

shorter than the detection wavelengths for the 

emissions. Chen and co-workers deposited Ag 

nanocrystals onto the surface of Fe3O4@C nanospheres 

and the as-made composite was used for both MRI and 

fluorescence imaging [43]. They also developed a 

monodisperse yolk-type Au@Fe3O4@C nanospheres as 

dual-probes for both MRI confocal fluorescence 

imaging [44]. 

Recently, CDs, a type of fluorescent carbon 

nanoparticles with a size below 10 nm, have received 

much attention because of their excellent optical 

properties including excitation-wavelength tunable 

emission and upconverted photoluminescence (PL). 

Compared with noble metal NPs, CDs demonstrate 

lower toxicity and better biocompatibility [45,46]. 

Particularly these CDs have not only bright nonblinking 

PL with excellent photo-stability but also photothermal 

conversion ability under NIR irradiation [47,48]. For 

example, Jiang et al. fabricated a novel magnetic 

fluorescent carbon nanohybrid (SPIO@CQDs) via the 

layer-by-layer assembly of SPIO NPs with carbon QDs, 

which demonstrated the successful bimodal cell 

imaging ability for both MRI and multicolour confocal 

fluorescence imaging [49]. As shown in Figure 2, 

SPIO@CQDs hybrid NPs can enter liver L02 cells and 

illuminate them brightly under laser excitation with 

wavelengths of 405 nm, 488 nm and 514 nm after a 6 h 

incubation, respectively [49]. 

Two-Photon Fluorescence Imaging 

The two-photon fluorescence imaging technique uses 

red-shifted light (e.g. NIR range) for excitation. For 

each excitation, two photons of NIR light are absorbed. 

The multiphoton absorption strongly suppresses the 

background signal. Furthermore, using NIR light 

minimizes scattering in the tissue. Both effects lead to 

an increased penetration depth.  Therefore, two-photon 

fluorescence imaging has attracted much attention 

because of its potential applications in direct 

observation of cellular structure and biological process 

with the advantages of deep penetration in biological 

tissues, low photobleaching and weak auto-

fluorescence [50]. Combining up-conversion 

fluorescent nanocrystals into carbon-based 

nanostructures can help us realize a new multifunctional 

imaging probe including the two-photon fluorescence 

imaging ability. It has been demonstrated by the 

integration of noble metal (Ag and Au) nanocrystals 

with the magnetic-carbon composite NPs through the 

excitation by femtosecond infrared laser of 720 nm and 

detection wavelength range of 408-464 nm [43,44]. 

 

 

Figure 2: Confocal laser scanning microscopy images 

of liver cells L02 incubated with SPIO@CQDs for 1, 3, 

and 6 h. (A0-A3: 1 h; B0-B3: 3 h; C0-C3: 6 h; A0-C0: 

bright field; A1-C1: filter of 405 nm; A2-C2: filter of 

488 nm; A3-C3: filter of 514 nm); D1-D3: single image 

for individual liver cells L02 incubated with 

SPIO@CQDs for 6 h [49]. 

Near-Infrared Fluorescence (NIRF) Imaging 

The NIRF imaging technique uses excitation 

wavelengths in the NIR range and detects the emitted 

fluorescence above the excitation wavelengths. So 

NIRF imaging has better signal to-background 

separation, lower energy absorption and deeper 

penetration for human tissues [51,52]. NIR light can 

pass across several cm of heterogeneous living tissues 

because tissue auto-fluorescence and light absorption in 

the NIR range (650-900 nm) are low so that optical 

markers in the NIR wavelength range are of particular 

interest for in vivo imaging [53,53]. 

Conclusion 

This mini-review summarizes the recent developments 

of carbon-based nanoscale systems for applications in 

the biomedical area. Various carbon-based 

multifunctional hybrid nanocarriers have been 
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developed for multi-modal imaging. Although there are 

the significant advances in the development of NPs, the 

clinical use of multifunctional hybrid nanocarriers is 

hindered by the challenge in delivering a clinically 

efficacious amount of chemotherapeutics to targeted 

cells and the unacceptable levels of off-target toxicity. 

Meanwhile, nonspecific cell targeting, poor bio-

distribution and lack of non-invasive imaging of 

multifunctional hybrid nanocarriers limit their 

applications in vivo. Thus, there is an urgent need to 

develop a clinically useful multifunctional carbon-

based imaging system. 
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